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Abstract A steady-state rolling problem with rigid–plastic, incompressible material and nonlocal Coulomb-
contact friction condition is considered. The corresponding primal, penalty and regularized penalty variational
formulations are presented and studied. It is shown that the solutions of the penalty and regularized penalty vari-
ational problems converge to the solutions of the primal and penalty variational problems, when the penalty and
regularization parameters tend to zero. The finite-element approximation of the regularized penalty problem is
presented and analysed. An algorithm, combining the finite-element method with convergent successive iterations
method of secant-modulus is proposed and applied to solve an illustrative example.

Keywords FE analysis · Nonlocal friction · Rigid–plastic material · Variational formulations · Weak solutions

1 Introduction

Following the thorough mechanical and computational study of continuous metal-forming processes, such as extru-
sion, drawing and rolling [1], [2, pp. 1–43], [3], it was recently found that, within the framework of the flow theory
of plasticity, these problems ([4–6]) can be mathematically formulated and analysed analogously to the frictional-
contact problems in elasticity [7, Chap. 3], [8, Chap. 13], [9, Chap. 5], [10, Chaps. 7, 10, 11], [11, Part 2], [12,
Sects. 2, 3]. These approaches use and extend the ideas and methods that were developed for contact problems and
their variational and numerical investigation.

The aim of this work is to state and study the solution of a boundary-value problem describing an isothermal,
steady-state rolling process with rigid–plastic, incompressible material and non-local Coulomb-friction contact con-
ditions. The corresponding primal and penalty variational problems are derived and the properties of the constituted
functionals are studied. Existence and uniqueness results are briefly commented on. Combining appropriately the
penalty parameters and taking the limit to zero, we prove the convergence of the solution of the penalty problem
to the solution of the primal problem. After a regularization of the nondifferentiable functionals of the penalty
problem, combining the regulazation parameters and taking the limit to zero, we demonstrate the convergence of
the solution of the regularized problem to the solution of the nonregularized one. A finite-element approximation
of the regularized penalty problem is presented and an a priori error estimate is obtained. A convergent algorithm,
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Fig. 1 The setting of
steady-state rolling

combining the finite-element method and the iterative method of secant-modulus type is proposed and applied to
solve an example problem. The numerical results are obtained and discussed.

2 Statement of the problem

We consider an isotropic, rigid–plastic and incompressible metallic body (workpiece) occupying the domain � ⊂
R

k, k = 2, 3, (Fig. 1), at isothermal and steady-state conditions. The boundary of the domain consists of four open
disjoint subsets � = �1 ∪ �2 ∪ �3 ∪ �4, as �1 ∪ �2 and is assumed traction-free; �3 is the boundary of symmetry
and �4 is the contact boundary. Here we identify a point of �̄ = � ∪ � by its Cartesian coordinates x = {xi },
(1 ≤ i ≤ k), and use the standard index notations. We assume that the workpiece material satisfies the following
yield criterion and flow rule:

F(σi j , ε̇i j ) ≡ σ̄ 2 − σ 2
p = 0, ėi j = 3

2

˙̄ε
σ̄

si j . (2.1)

The equivalent stress and strain-rate are given by the expressions

σ̄ =
√

3

2
si j si j , ˙̄ε =

√
2

3
ėi j ėi j , (2.2)

where σH = 1
3σi i , ε̇V = ε̇i i , are the hydrostatic pressure and the volume dilatation strain-rate; si j = σi j − σH δi j ,

ėi j = ε̇i j − 1
3 ε̇V δi j , are the components of the deviatoric stress and the strain-rate tensors, σi j and ε̇i j , 1 ≤ i, j ≤ k,

are the components of the stress and the strain-rate tensors. We further assume that the uniaxial yield limit σp

depends on the equivalent strain-rate ˙̄ε and that the following decomposition holds:

σp( ˙̄ε) = σp0 + σp1( ˙̄ε), (2.3)

where σp0 = σp(0) ≥ 0 is the initial yield limit of the material and σp1( ˙̄ε), with σp1(0) = 0, is assumed to be a
monotonically increasing, almost everywhere differentiable function such that:

η2 ≤ σ
′
p1(

˙̄ε) ≤ σp1( ˙̄ε)
˙̄ε ≤ η1, ∀˙̄ε ∈ [0,∞), (2.4)

where η1 and η2 are positive constants and where a prime denotes differentiation with respect to the argument.
We state the following boundary-value problem:

Problem 1 Find the velocity u = {ui } and the stress σσσ = {σi j } fields, satisfying the following equations and
relations:

– equation of equilibrium

σi j, j = 0 in �, (2.5)

– incompressibility condition

ε̇V = 0 in �, (2.6)
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– constitutive equations

σi j = 2

3

σp

˙̄ε ε̇i j + σH δi j , (2.7)

– strain-rate velocity relations

ε̇i j = 1

2
(ui, j + u j, i ), (2.8)

– boundary conditions

σi j n j = 0 on �1 ∪ �2, (2.9)

σσσ T = 0, uN = 0 on �3, (2.10)

uN = 0, and

if |σσσ T (u)| < τ f (u), then uT − uTR = 0,

if |σσσ T (u)| = τ f (u), then ∃ const. λ ≥ 0,

such that uT − uTR = −λσσσ T (u) on �4. (2.11)

Here δi j is the Kronecker symbol; n = {ni } is the outward unit normal vector with respect to �; uN , uT and σN ,
σσσ T are the normal and tangential components of the velocity and the stress vector; uTR is the tangential component
of the roll velocity; τ f (u) is the shear-strength limit for the material of the roll-workpiece interface, expressed by
the nonlocal Coulomb-friction law:

τ f (u) = µf (x)σ̄N (u), (2.12)

σ̄N (u(x)) = 1

|�h |
∫

�h

wh(x − y)(−σN (u(y)))dy, x ∈ �4, (2.13)

wh(x − y) =
{

1 if |x − y| < h,

0 if |x − y| ≥ h,
(2.14)

where µf (x) is the friction coefficient, σ̄N (u) ≥ 0 is the mollified normal stress on �4 ([5], [10, Chap. 11]) and
wh(x − y) is the mollification kernel.

3 Variational formulations

Let us denote by V and H the following Hilbert spaces

V = {v : v ∈ (H1(�))k, vN = 0 on �3}, H = (H0(�))k ≡ (L2(�))k, V ⊂ H ≡ H′ ⊂ V′,
where V′ and H′ are their dual spaces. By (Hm(�))k , with m a nonnegative integer, we denote the Hilbert space of
vector-valued functions defined in �

(Hm(�))k = {
v = {vi } : Dαvi ∈ L2(�), 1 ≤ i ≤ k, 0 ≤ |ααα| ≤ m

}
,

with the inner product and norm

(u, v)m =
∫

�

m∑
|α|=0

(
k∑

i=1

Dαui Dαvi

)
dx,

‖u‖m = (u, u)
1/2
m =

⎛
⎝∫

�

m∑
|α|=0

(
k∑

i=1

|Dαui |2
)

dx

⎞
⎠

1/2

,

where

Dαvi = ∂ |α|vi

∂xα1
1 ∂xα2

2 . . . ∂xαk
k

,

ααα = (α1, α2, ..., αk) ∈ Z
k, αi ≥ 0, |ααα| = α1 + α2 + · · · + αk .
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We further define on V the following inner product and norm

(u, v)V =
∫

�

ε̇i j (u)ε̇i j (v)dx +
∫

�4

uN vN d�, ‖u‖V = (u, u)
1/2
V , ∀u, v ∈ V, (3.1)

and denote by W the following subspace of V

W = {
v : v ∈ V, vi,i = 0 in �, vN = 0 on �4

}
.

We shall also use the space H1/2(�4) ⊂ L2(�4) of traces vN = γγγ 0(v) · n on �4 of all v ∈ V, with the norm

‖vN ‖1/2,� = inf
v∈V

{‖v‖V : vN = γγγ 0(v) · n
}
,

where γγγ 0 : (H1(�))k → (H1/2(�))k is the trace operator.
Then, multiplying (2.5) by (v − u) ∈ W, in the inner product sense, applying Green’s formula and taking into

account the boundary conditions, we obtain∫
�

σi j (u)(ε̇i j (v) − ε̇i j (u))dx +
∫

�4

τ f (u)|vT − uTR|d� −
∫

�4

τ f (u)|uT − uTR|d� ≥ 0. (3.2)

Let us introduce the following notations for all u, v, w ∈ V,

a(w; u, v) =
∫

�

2

3

σp1(w)

˙̄ε(w)
ε̇i j (u)ε̇i j (v)dx, (3.3)

j0(v) =
∫

�

σp0 ˙̄ε(v)dx, j (u, v) =
∫

�4

τ f (u)|vT − uTR|d�, (3.4)

then the variational statement of Problem 1 is as follows:

Problem 2 Find u ∈ W, satisfying

a(u; u, v − u) + j0(v) − j0(u) + j (u, v) − j (u, u) ≥ 0, ∀v ∈ W. (3.5)

Assuming further the following relations between the hydrostatic pressure and the volume dilatation strain-rate
in � and between the normal stress and velocity on �4

σH (u) = ε̇V (u)

d
, σN (u) = −uN

dN
, (3.6)

where d and dN are small positive penalty constants, and denoting

b(u; u, v) = a(u; u, v) +
∫

�

1

d
ε̇V (u)ε̇V (v)dx +

∫
�4

1

dN
uN vN d�, (3.7)

we obtain the following variational penalty formulation of Problem 1:

Problem 3 Find u ∈ V, satisfying for all v ∈ V the variational inequality

b(u; u, v − u) + j0(v) − j0(u) + j (u, v) − j (u, u) ≥ 0. (3.8)

Since the functionals j0(v) and j (u, v) are nondifferentiable at v = 0 and vT = uTR, we introduce the following
convex, regularized functionals ([10, Chap. 10], [13]):

j0ε(v) =
∫

�

σp0

√
˙̄ε2

(v) + ε2dx, jdT (u, v) =
∫

�4

τ f (u)

√
|vT − uTR|2 + d2

T d�, (3.9)

where ε > 0 and dT > 0 are constants. These functionals are already differentiable

〈
j
′
0ε(u), v

〉 =
∫

�

σp0

2
3 ε̇i j (u)ε̇i j (v)√

˙̄ε2
(u) + ε2

dx, (3.10)

〈
j
′
dT

(u, u), v
〉 =

∫
�4

τ f (u)
(uT − uTR) · vT√
|uT − uTR|2 + d2

T

d�, (3.11)
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and such that
〈
j
′
0ε(u), v − u

〉 ≤ j0ε(v) − j0ε(u), (3.12)〈
j
′
dT

(u, u), v − u
〉 ≤ jdT (u, v) − jdT (u, u), (3.13)〈

j
′
0ε(v) − j

′
0ε(u), v − u

〉 ≥ 0, (3.14)〈
j
′
dT

(u, v) − j
′
dT

(u, u), v − u
〉 ≥ 0. (3.15)

Then we obtain the following regularized problem:

Problem 3ε,dT Find u ∈ V, satisfying for all v ∈ V

b(u; u, v) + 〈
j
′
0ε(u), v

〉 + 〈
j
′
dT

(u, u), v
〉 = 0. (3.16)

It is clear that the solutions of Problem 3 and Problem 3ε,dT will depend on the introduced penalty and regulari-
zation constants. From (3.7), (3.3) and (2.4), it easily follows that there exist positive constants α1 and α2, such that

b(u; u, u) ≥ α1

(∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d�

)
, (3.17a)

b(u; u, v) ≤ α2

∣∣∣∣
∫

�

ε̇i j (u)ε̇i j (v)dx +
∫

�4

uN vN d�

∣∣∣∣ . (3.17b)

With the help of Korn’s inequality [7, Chap. 3], [10, Chap. 5],∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�

ui ui dx ≥ cK ‖u‖2
1, ∀u ∈ (H1(�))k, (3.18)

where cK > 0 is a constant, the following result holds:

Lemma 3.1 There exists a constant β > 0, such that

b(u; u, u) ≥ β‖u‖2
1, ∀u ∈ V. (3.19)

Proof From (3.17a) and (3.18) it follows that (3.19) will be satisfied if we prove that∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d� ≥ β1

∫
�

ui ui dx,

where β1 > 0 is a constant. The case u = 0 is trivial. For u = 0, without loss of generality we substitute u by
u/‖u‖0 and using the same notation, since ‖u‖0 = 1, we have to prove that∫

�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d� ≥ β1.

We suppose the contrary. Then there exists a sequence {un} ∈ V, such that ‖un‖0 = 1 and∫
�

ε̇i j (un)ε̇i j (un)dx +
∫

�4

uN nuNnd�−−−→n→∞0.

From (3.18) it then follows that ‖un‖1 < const.. Therefore there exists a subsequence of {un}, also denoted by {un},
which is weakly convergent to u ∈ (H1(�))k . Then we have that

0 = lim inf
n→∞

(∫
�

ε̇i j (un)ε̇i j (un)dx +
∫

�4

uNnuNnd�

)
≥

∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d� ≥ 0,

and hence∫
�

ε̇i j (u)ε̇i j (u)dx = 0,

∫
�4

uN uN d� = 0,
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316 T. A. Angelov

i.e., ε̇i j (u) = 0 in � and uN = 0 on �4. But we also have uN = 0 on �3 and �3 is not parallel to �4, which yields
u = 0 in � ∪ �. Further, since V is compactly embedded in H, from the weak convergence of {un} in V follows its
strong convergence in H, i.e., {un}−−−→n→∞0 in H, which contradicts our assumption ‖u‖0 = 1. Then we have

b(u; u, u) ≥ α1

(∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d�

)

≥ α1

2

∫
�

ε̇i j (u)ε̇i j (u)dx + α1

2

(∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�4

uN uN d�

)

≥ α1

2

(∫
�

ε̇i j (u)ε̇i j (u)dx + β1

∫
�

ui ui dx

)

≥ min

(
α1

2
,
α1β1

2

) (∫
�

ε̇i j (u)ε̇i j (u)dx +
∫

�

ui ui dx

)
≥ β‖u‖2

1,

which completes the proof. ��

Remark 3.1 The above lemma also states that the norm ‖u‖V is equivalent to the (H1(�))k norm ‖u‖1. It can be
further shown that, for all u, v, w ∈ V, the following properties of the functionals above hold ([5]):

b(u; u, u) ≥ c1‖u‖2
V , b(u; v, w) ≤ c2‖v‖V ‖w‖V , (3.20)

b(v; v, v − u) − b(u; u, v − u) ≥ m‖v − u‖2
V , (3.21)

b(v; v, w) − b(u; u, w) ≤ M‖v − u‖V ‖w‖V , (3.22)

0 ≤ j0(u) ≤ c3‖u‖V , 0 ≤ j (u, v) ≤ c4‖u‖V ‖vT − uTR‖V , (3.23)

| j0(v) − j0(u)| ≤ c0‖v − u‖V , (3.24)

| j (u, w) + j (w, v) − j (u, v) − j (w, w)| ≤ c‖w − u‖V ‖w − v‖V , (3.25)

where c0, c1, c2, c3, c4, c, m and M are positive constants, as c and c3 depend on the friction coefficient µ f (x) ∈
L∞(�4). ��

4 Existence, uniquenes and convergence

We shall now briefly present an algorithmically oriented proof of the following existence and uniqueness theorem,
proved in [5] in a general setting:

Theorem 4.1 Let the properties given in Remark 3.1 hold. Then, for a sufficiently small friction coefficient, Problem
3 has a unique solution u ∈ V.

Sketch of proof The existence part is based on proving the convergence of the successive iteration (secant-modulus)
method, defined by the following.

Problem 3n For an arbitrary initial u0 ∈ V find un+1, n = 0, 1, . . . satisfying for all v ∈ V

b(un; un+1, v − un+1) + j0(v) − j0(un+1) + j (un, v) − j (un, un+1) ≥ 0. (4.1)

Since this problem has unique solutions un+1 for every n = 0, 1, 2, . . . , ([5], [14, App. 1], [15, Chap. 1]), and for
sufficiently small coefficient of friction, the sequence {un} is such that

‖un+1 − un‖V ≤ · · · ≤ qn‖u1 − u0‖V , 0 < q < 1, i.e., lim
n→∞ ‖un+1 − un‖V = 0, (4.2)
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Variational and numerical approach 317

it follows that it is fundamental and therefore there exists an unique u ∈ V to which un converges strongly as
n → ∞ in V. This u is a solution of Problem 3, since after v is replaced with un in Problem 3 and v in Problem 3n

is replaced, respectively, with u and un , it consequently follows that

b(u; u, u − un) − b(un; un, u − un)

≤ j0(un) − j0(u) + j (u, un) − j (u, u) − b(un; un, u − un)

+ b(un; un+1, u − un) − b(un; un+1, u − un)

= b(un; un+1 − un, u − un) + j0(un) − j0(u) + j (u, un) − j (u, u)

+ b(un; un+1, un − un+1) − b(un; un+1, u − un+1)

≤ b(un; un+1 − un, u − un) + j (u, un) − j (u, u) + j (un, u) − j (un, un)

+ b(un; un+1, un − un+1) + j0(un) − j0(un+1) + j (un, un) − j (un, un+1). (4.3)

Using the inequalities in Remark 3.1, it further follows that

(m − c)‖u − un‖2
V ≤ C1‖u − un‖V ‖un − un+1‖V

+ C2‖un+1‖V ‖un+1 − un‖V + C3‖un+1 − un‖V + C4‖un‖V ‖un+1 − un‖V , (4.4)

where C1, C2, C3, C4 are positive constants. Since for sufficiently small coefficient of friction c < m and since
{un} is bounded in V, for n → ∞ it follows that

lim
n→∞ ‖u − un‖V = 0. �� (4.5)

Next we shall study the convergence properties of the sequence of solutions {ud,dN } of Problem 3, obtained for
all sufficiently small penalty constants d > 0 and dN > 0 ([5], [10, Chap. 7], [16, Chap. 3, Sect. 5]). This sequence
is bounded in V, since setting v = 0 in (3.8), we have ‖u‖V ≤ c f |uTR|, where c f is a positive constant, depending
on the coefficient of friction. Taking then, without loss of generality, dN = cN d, where cN is a positive constant,
we can construct by diagonalization a subsequence {ud}, which is weakly convergent in V, such that the following
result holds:

Theorem 4.2 At d → 0 there exists an element u ∈ W, which is the unique solution of the Problem 2.

Proof For ud ∈ V and all v ∈ V, from (3.8) it follows[
b(ud ; ud , ud) + j0(ud) + j (ud , ud)

]

− 1

d

∫
�

ε̇V (ud)ε̇V (v)dx − 1

cN d

∫
�4

ud
N vN d� ≤ a(ud ; ud , v) + j (ud , v) + j0(v). (4.6)

Since the quantity in brackets in the left-hand side of (4.6) is nonnegative, we have

−cN

∫
�

ε̇V (ud)ε̇V (v)dx −
∫

�4

ud
N vN d� ≤ cN d

[
|a(ud ; ud , v)| + j (ud , v) + j0(v)

]
. (4.7)

Having in mind that the right-hand side of (4.6) is bounded and since from the weak convergence of ud in V it
follows that

ε̇V (ud) → ε̇V (u) weakly in H, (4.8)

ud
N → uN weakly in H1/2(�4), (4.9)

taking d → 0 in (4.7), we obtain for all +v,−v ∈ V,

−cN

∫
�

ε̇V (u)ε̇V (v)dx −
∫

�4

uN vN d� ≤ 0, (4.10)

+cN

∫
�

ε̇V (u)ε̇V (v)dx +
∫

�4

uN vN d� ≤ 0. (4.11)
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318 T. A. Angelov

Therefore we have∫
�

ε̇V (u)ε̇V (v)dx ≡ 0,

∫
�4

uN vN d� ≡ 0, ∀v ∈ V, (4.12)

and hence ε̇V (u) ≡ 0 and uN ≡ 0, i.e., u ∈ W. We shall now show that this u is a solution of (3.5) in W. Since for
all w ∈ W we have

a(w; w, w − ud) + j0(w) − j0(ud) + j (w, w) − j (w, ud)

= a(w; w, w − ud) + j0(w) − j0(ud) + j (w, w) − j (w, ud)

−
[
b(ud ; ud , w − ud) + j0(w) − j0(ud) + j (ud , w) − j (ud , ud)

]

+
[
b(ud ; ud , w − ud) + j0(w) − j0(ud) + j (ud , w) − j (ud , ud)

]

≥ (m − c)‖w − ud‖2
V ≥ 0, (4.13)

taking d → 0 we obtain

a(w; w, w − u) + j0(w) − j0(u) + j (w, w) − j (w, u) ≥ 0, ∀w ∈ W. (4.14)

Setting w = u + t (v − u)), t ∈ [0, 1],∀v ∈ W, we obtain

0 ≤ a(u + t (v − u); u + t (v − u), t (v − u)) + j0(u + t (v − u)) − j0(u)

+ j (u + t (v − u), u + t (v − u)) − j (u + t (v − u), u)

≤ ta(u + t (v − u); u + t (v − u), v − u) + (1 − t) j0(u) + t j0(v) − j0(u)

+ (1 − t) j (u + t (v − u), u) + t j (u + t (v − u), v) − j (u + t (v − u), u)

= ta(u + t (v − u); u + t (v − u), v − u) + t j0(v) − t j0(u)

+ t j (u + t (v − u), v) − t j (u + t (v − u), u). (4.15)

Hence for t = 0 we have that

a(u + t (v − u); u + t (v − u), v − u) + j0(v) − j0(u)

+ j (u + t (v − u), v) − j (u + t (v − u), u) ≥ 0 (4.16)

and taking t → 0 we finally obtain

a(u; u, v − u) + j0(v) − j0(u) + j (u, v) − j (u, u) ≥ 0, ∀v ∈ W, (4.17)

which is Problem 2. In order to establish the uniqueness of u, let us assume that u1, u2 ∈ W are two different
solutions, i.e.,

a(u1; u1, v − u1) + j0(v) − j0(u1) + j (u1, v) − j (u1, u1) ≥ 0 (4.18)

a(u2; u2, v − u2) + j0(v) − j0(u2) + j (u2, v) − j (u2, u2) ≥ 0. (4.19)

Setting v = u2 in (4.18) and v = u1 in (4.18), after adding the inequalities and rearranging we obtain

j (u1, u2) + j (u2, u1) − j (u1, u1) − j (u2, u2) ≥ a(u1; u1, u1 − u2) − a(u2; u2, u1 − u2). (4.20)

Using Remark 3.1, we obtain that for a sufficiently small coefficient of friction, i.e., for c < m,

0 ≥ (m − c)‖u1 − u2‖2
V > 0, (4.21)

which yields u1 ≡ u2. ��
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Remark 4.1 Existence and uniqueness of the solution of Problem 3ε,dT can be proved analogously to
Problem 3. ��

Further we shall study the convergence properties of the sequence of solutions {uε,dT } of Problem 3ε,dT , obtained
for all sufficiently small regularization constants dT > 0 and ε > 0 ([10, Chap. 10], [13]). This sequence is bounded
in V and taking without loss of generality, dT = cT ε, where cT is a positive constant, we can construct by diago-
nalization a subsequence {uε}, weakly convergent in V, such that the following result is obtained:

Theorem 4.3 Let u ∈ V and uε ∈ V be the solutions of the Problem 3 and Problem 3ε,dT , respectively. Then there
exists a positive constant C0, independent of ε, such that

‖u − uε‖V ≤ C0
√

ε. (4.22)

Proof Let us set v = uε in (3.8) and v = u − uε in (3.16). Then adding (3.8) to (3.16) and taking into account
(3.12–3.15) and Remark 3.1, we have

m‖u − uε‖2
V ≤ b(u; u, u − uε) − b(uε; uε, u − uε)

≤ j0(uε) − j0(u) + 〈
j
′
0ε(u

ε, u − uε
〉

+ j (u, uε) − j (u, u) + 〈
j
′
dT

(uε, uε), u − uε
〉

≤ j0(uε) − j0(u) + j0ε(u) − j0ε(uε)

+ j (u, uε) − j (u, u) + jdT (uε, u) − jdT (uε, uε)

+ j (uε, u) − j (uε, u) + j (uε, uε) − j (uε, uε) ≤ C1ε + C2‖u − uε‖2
V , (4.23)

where C1 and C2 are positive constants. For a sufficiently small friction coefficient, such that m > C2, there exists
a positive constant C0 independent of ε for which

‖u − uε‖V ≤
√

C1ε

m − C2
= C0

√
ε. �� (4.24)

5 Finite-element approximation

Let Ch be a regular partitioning of �̄ = ∪K∈Ch K into finite elements K and let us construct the finite-element
spaces

Vh =
{

vh : vh ∈ V ∩ (C0(�̄))k, vh |K = v̂h ◦ F−1
K , v̂h ∈ (Q1(K̂ ))k

}
,

where h is the mesh parameter approaching zero, FK : K̂ → K , FK ∈ (Q1(K̂ ))k is the bilinear isoparametric
transformation, K̂ is the reference element and (Q1(K̂ ))k is the space of polynomials on K̂ of order not greater
than one in each variable. Let us also suppose that the following standard approximation properties of Vh hold [10,
Chap. 4], [17, Chap. 3]:

∀v ∈ (Hm(�))k ∩ V, ∃vh ∈ Vh, such that

‖v − vh‖s ≤ c�hr‖v‖m, r = min{2 − s, m − s}, m > s ≥ 0,

and if γ 0(v) ∈ (H p(�))k, then

‖γ 0(v) − γ 0(v
h)‖q,� ≤ c�hr1‖γ 0(v)‖p,�, r1 = min{3/2 − q, p − q}, m > p > q, (5.1)

where c� > 0 and c� are constants that are independent of h and v. Then from Problem 3ε,dT we obtain in Vh the
following finite-dimensional problem:

Problem 3ε,dT
h Find uh ∈ Vh , satisfying for all vh ∈ Vh the equation

b
(
uh; uh, vh) + 〈

j
′
0ε(u

h), vh 〉 + 〈
j
′
dT

(uh, uh), vh 〉 = 0. (5.2)
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Theorem 5.1 Let u ∈ (H2(�))k ∩ V and uh ∈ Vh be the solutions of the Problem 3ε,dT and Problem 3ε,dT
h ,

respectively. Then there exists a positive constant C, independent of h, such that

‖u − uh‖V ≤ C‖u‖2h. (5.3)

Proof Subtracting (5.2) from (3.16) with v = vh we obtain

b(u; u, vh) − b(uh; uh, vh) + 〈
j
′
0ε(u), vh 〉 − 〈

j
′
0ε(u

h), vh 〉 + 〈
j
′
dT

(u, u), vh 〉 − 〈
j
′
dT

(uh, uh), vh 〉 = 0. (5.4)

Replacing further vh with (u−uh)−(u−vh) and taking into account Remark 3.1 and (3.12–3.15), we consequently
have

m‖u − uh‖2
V ≤ b(u; u, u − uh) − b(uh; uh, u − uh)

+ 〈
j
′
0ε(u) − j

′
0ε(u

h), u − uh 〉 + 〈
j
′
dT

(u, u) − j
′
dT

(u, uh), u − uh 〉
= b(u; u, u − vh) − b(uh; uh, u − vh) + 〈

j
′
0ε(u) − j

′
0ε(u

h), u − vh 〉
+ 〈

j
′
dT

(uh, uh) − j
′
dT

(u, uh), u − uh 〉 + 〈
j
′
dT

(u, u) − j
′
dT

(uh, uh), u − vh 〉
≤ C1‖u − uh‖V ‖u − vh‖V + C2‖u − uh‖2

V , (5.5)

where C1 and C2 are positive constants. Then, for a sufficiently small friction coefficient, such that m > C2, we
obtain

‖u − uh‖V ≤ C1

m − C2
‖u − vh‖V ; (5.6)

after taking into account the finite-element interpolation properties (5.1), we conclude that there exists a positive
constant C independent of h, such that (5.3) holds. ��

Remark 5.1 Existence and uniqueness results, for the discrete problem considered here, can be obtained analogously
to the continuous problem of the preceding section. ��

6 Algorithm and numerical results

Applying the secant-modulus method to the Problem 3ε,dT
h , we obtain:

Problem 3ε,dT
h,n Find uh

n+1 ∈ Vh , n = 0, 1, 2, . . . , satisfying for arbitrary initial uh
0 ∈ Vh and every vh ∈ Vh the

equation

b
(
uh

n; uh
n+1, vh) + 〈

j
′
0ε(u

h
n+1), vh 〉 + 〈

j
′
dT

(uh
n , uh

n+1), vh 〉 = 0, (6.1)

until ‖uh
n+1 − uh

n‖/‖uh
n+1‖ < δ, where ‖ · ‖ is a vector norm and δ is the accuracy tolerance.

This problem, using complete Gauss integration on every finite element, defines:

Algorithm 1 Find {uh
n+1}, n = 0, 1, 2, . . . , satisfying for arbitrary initial {uh

0} the system of equations

K(uh
n){uh

n+1} = F(uh
n), (6.2)

until ‖uh
n+1 − uh

n‖/‖uh
n+1‖ < δ.

Here K and F are the velocity-dependent stiffness matrix and the load vector. The vector of nodal velocities is
denoted by {uh

n+1}. We apply this algorithms to solve the following example problem [3]:
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Example A two-dimensional workpiece with length 15 mm, initial and exit thicknesses 2 mm and 1.2 mm, respec-
tively, is rolled with rolls with diameter 400 mm and velocity uTR = 1256.64 mm/s. The following empirical yield
limit expression (2.3), satisfying (2.4) for all ˙̄ε ∈ [0,∞), is supposed to hold:

σp0 = const., and σp1( ˙̄ε) = A ˙̄εα
for ˙̄ε ∈ [˙̄ε1, ˙̄ε2], (6.3a)

σp1( ˙̄ε) = σp1( ˙̄εq)

˙̄εq

˙̄ε, q = 1, 2, for ˙̄ε ∈ [0, ˙̄ε1] ∪ [˙̄ε2,∞), (6.3b)

where A > 0, α ∈ (0, 1], ˙̄ε1 and ˙̄ε2 are material constants, depending on the process conditions. The following
values are chosen for the material constants: σp0 = 1.0 MPa, A = 10−6, α = 1.0, or σp0 = 0.0, A = 1.0 MPa,
α = 0.001; ˙̄ε1 = 10−3 and ˙̄ε2 = 103. Also the following values are taken for the friction coefficient µ = 0.1 and for
the regularization and penalty constants, respectively, ε = dT = 10−6 and d = dN = 10−2 ≈ 10−3/ max(σ h

p / ˙̄εh).
Two finite-element meshes are constructed: an initial 30×3 coarse mesh and a final 60×4 fine mesh, containing

correspondingly 90 and 240 quadrilateral finite elements. The contact boundary is discretized correspondingly by
20 and 40 bilinear line elements. The total number of nodes is 124 and 305 correspondingly. The computed values
for the effective strain rates, normal and hydrostatic pressure and friction stresses are averaged at the finite-element
nodes (centers). The computational experiments show that the algorithm is fast: results are obtained for 11 and
18 iterations, depending on the used mesh, within an accuracy of δ = 10−3. The values of the regularization and
penalty constants are chosen optimally, in the sense that a further decrease leads to computational fluctuations and
overconstraining. This shows the mesh-dependence of the penalty parameters, which also means that the exter-
nal unknowns, normal and hydrostatic pressure, satisfy mesh-dependent stability condition. Therefore, despite the
obtained theoretical convergence results for the continuous penalty method, if the penalty constants are not carefully
chosen in relation to the mesh used, the discrete penalty method may not work. Further, it should be mentioned
that, for both choices of the yield limit, the computed results are almost identical. The obtained normal pressures
and friction stresses along �4 and hydrostatic pressure and effective strain-rate distributions in � are illustrated in
Figs. 2–4. The normal pressure and friction-stress results are very close to the corresponding results presented in
[3], which finally supports the applicability and the effectiveness of the considered method of approach for solving
rolling problems.

Fig. 2 Normal pressures
σ̄N (MPa) and frictional
stresses σσσ T (MPa) along �4
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Fig. 3 Distribution of
hydrostatic pressure σH
(MPa) in � fine mesh 
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7 Concluding remarks

We have considered an important class of contact problems in plasticity flow theory with nonlocal Coulomb fric-
tion, describing an isothermal, steady-state rolling process of a rigid–plastic, incompressible, strain-rate dependent
metallic body by absolutely rigid rolls. The corresponding primal, penalty and regularized penalty variational
formulations, in the form of strongly nonlinear variational inequalities and equations, are derived and analysed
variationally and numerically. The fundamental work on elastic frictional-contact problems, variational inequalities
and their numerical solution, by Duvaut and Lions [7, Chap. 3], Nečas and Hlavaček [8, Chap. 13], Panagiotopoulos
[9, Chap. 5], Kikuchi and Oden [10, Chaps. 2–7, 10, 11], Lions [16, Chaps. 2, 3], Glowinski et al. [14, App. 1],
Glowinski [15, Chap. 1], Ciarlet [17, Chaps. 3, 5] and the valuable recent contributions to quasi-static and dynamic
elastic, viscoelastic and viscoplastic frictional-contact problems, with or without regularized friction and normal
compliance, by Cocu et al. [18], Kuttler [19], Andersson [20], Andersson and Klarbring [21], Han and Sofonea [11,
Parts 2–4], Shillor et al. [12, Sects. 2, 3], are essentially used. Here, an extension of the considered problem, material
nonlinearities, functional peculiarities and approximation requirements has been presented. For example, one such
extension of the variational treatment of frictional-contact problems in elasticity for rigid punch-indentation and
extrusion problems, using large-deformation elastoplasticity, is given in [10, Chap. 12, Par. 5]. As a result, an incre-
mental (updated Lagrangian) variational formulation is derived, to which existing methods are directly applicable.
At high temperatures and loading conditions, characterizing continuous, hot metal-forming processes, however,
the elastic deformations are negligible with respect to plastic ones. In such cases, the flow theory of plasticity
with rigid–plastic, temperature, strain and strain-rate-dependent material model, adequately describes the material
behaviour [1], [2, pp. 1–43], [3]. In [4]–[6] steady-state and nonsteady rolling problems with nonlocal friction,
for rigid–plastic, incompressible, strain-rate and strain-dependent materials are considered. Variational inequality
formulations are derived and existence and uniqueness results are obtained. Here, an extension of the variational
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and numerical study of the steady-state case is presented. The obtained results include: Lemma 3.1, establishing
coercivity of the nonlinear functional (3.19); Theorem 4.1, giving an algorithmically oriented proof for existence
and uniqueness of the solution of the penalty variational problem; Theorems 4.2 and 4.3, showing convergence
of the solutions of the penalty and regularised penalty problem to the solutions of the primal and penalty one
correspondingly, when the appropriately combined penalty and regularizations parameters tend to zero, and thus
proving, as a consequence, existence and uniqueness of the solutions to these problems; Theorem 5.1, establishing
an a priori finite-element error estimate of optimal order; Algorithm 1, an iterative computational scheme, com-
bining finite-element and secant modulus methods and its verification for solving steady-state rolling problems. It
has finally become clear that there are many fruitful topics for future research, related to metal-forming processes,
some of which are: elaboration of the interface contact and friction models; variational formulation and analysis of
new frictional-contact problems with coupled effects in the flow theory of plasticity with internal state variables;
analysis and application of other approximation methods and computational algorithms.
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8. Nečas J, Hlavaček I (1981) Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam
9. Panagiotopoulos PD (1985) Inequality problems in mechanics and applications. Birkhauser, Basel

10. Kikuchi N, Oden JT (1988) Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM,
Philadelphia

11. Han W, Sofonea M (2002) Quasistatic contact problems in viscoelasticity and viscoplasticity. AMS-Intl. Press, Providence
12. Shillor M, Sofonea M, Telega JJ (2004) Models and variational analysis of quasistatic contact. Lecture notes in physics, vol 655.

Springer, Berlin
13. Huang H, Han W, Zhou J (1994) The regularization method for an obstacle problem. Numer Math 69:155–166
14. Glowinski R, Lions J-L, Tremolieres R (1981) Numerical analysis of variational inequalities. North-Holland, Amsterdam
15. Glowinski R (1984) Numerical methods for nonlinear variational problems. Springer-Verlag, Berlin
16. Lions J-L (1969) Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod, Paris
17. Ciarlet P (1978) The finite element method for elliptic problems. North-Holland, Amsterdam
18. Cocu M, Pratt E, Raous M (1996) Formulation and approximation of quasistatic frictional contact. Int J Eng Sci 34(7):783–798
19. Kuttler KL (1997) Dynamic friction contact problem with general normal and friction laws. Nonlinear Anal 28:559–575
20. Andersson L-E (2000) Existence results for quasistatic contact problems with Coulomb friction. Appl Math Optim 42:169–202
21. Andersson L-E, Klarbring A (2001) A review of the theory of static and quasi-static frictional contact problems in elasticity. Phil

Trans R Soc Lond A 359:2519–2539

123


	Abstract
	Abstract
	1 Introduction
	2 Statement of the problem
	3 Variational formulations
	4 Existence, uniquenes and convergence
	5 Finite-element approximation
	6 Algorithm and numerical results
	7 Concluding remarks
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


